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A B S T R A C T   

Controlled de-orbiting plays a crucial role in any space mission to ensure landing of a satellite or capsule in the 
desired location and preventing damage to people and property on the ground caused by debris. The necessary 
orbital energy reduction from the initial conditions to the re-entry interface can be achieved using a de-orbit burn 
or exploiting drag modulation as a control mechanism. The current work perfectly fits in this scenario, proposing 
a novel algorithm to generate minimum-time optimal trajectories for a satellite ballistic de-orbiting from a Low 
Earth Orbit (LEO) to the atmospheric re-entry interface. The formulation is written in terms of modified equi
noctial orbital parameters, particularly suitable for trajectory analysis and optimization, even in cases of oscil
latory problems with large time scales as in the de-orbiting problem. The optimization problem is solved with the 
MATLAB software GPOPS-II using a hp adaptive Gaussian quadrature orthogonal collocation method. It is 
formulated as a single-stage optimization problem considering the exposed surface as a control variable. The cost 
function to be minimized is the final time, while the imposition of an event constraint on the altitude at the de- 
orbit point ensures its value is in an acceptable range. A novel class of solutions is defined for the algorithm 
implementation to guarantee the desired values of latitude and longitude. It has been used to generate high- 
precision optimal trajectories and corresponding control variable laws in different conditions. The identifica
tion of a common trend of solutions along an infinite-shaped pattern allowed the possibility to model a wide 
range of missions, involving different initial conditions and satellites. A subsequent Monte Carlo analysis showed 
the algorithm validity and robustness with a successful outcome on 500 cases and an error less of 0.5% for most 
of them.   

1. Introduction 

Since the beginning of human activity in space, protecting people 
and properties from spacecraft-related damage has become a crucial 
consideration for engineers [1,2]. To ensure a satellite or capsule lands 
in a desired location, and to avoid debris damage to population and 
ground assets, a controlled de-orbiting is imperative, for both manned 
and unmanned space missions. In addition to protecting objects on the 
ground, controlled de-orbiting is also important for missions involving 
scientific experiments demanding the recovery of samples for further 
analysis (e.g., biological samples, medical monitoring equipment, 
pharmaceutical testing). 

A typical re-entry scenario consists of two phases: the de-orbiting, 
from the initial conditions to the atmospheric re-entry interface, and a 
final stage, ending at the desired landing point. The primary topic of this 
research is the de-orbiting phase. In most of the existing literature, the 
focus is on satellite de-orbiting performed using a de-orbit burn, which is 

based on the application of thrust in an opposite direction with respect 
to the satellite motion to reduce the orbital speed and subsequently 
lower the orbit. An alternative de-orbiting control mechanism is drag 
modulation, which exploits atmospheric drag variation to achieve the 
necessary orbital energy reduction from the initial condition to the re- 
entry interface. Some technological solutions include the employment 
of retractable tape-spring booms [3,4] or mechanisms able to modulate 
the drag by varying the aerodynamic shape of the spacecraft [5–8]. 

For any de-orbiting technique, it is extremely important for the sat
ellite to reach the de-orbiting point with high precision to ensure the 
landing point is positioned within a specific region. In literature, several 
works investigate the employment of drag for attitude control [9–11], 
satellite maneuvering [12–14], formation flight and constellation 
maintenance [15–22]. However, a limited number of them involves the 
use of aerodynamic drag to achieve a controlled de-orbit [23–27]. In 
Ref. [23], drag modulation is the control mechanism used to de-orbit. 
The algorithm is based on an analytical solution to determine the bal
listic coefficient law necessary to reach a desired de-orbiting point. The 
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use of an analytical exponential model for density, not considering 
possible fluctuations, and the application on only circular orbits make 
the simulated problems less realistic. Also, in Refs. [24–26] the work 
exploits the modulation of the ballistic coefficient to reach a desired 
de-orbiting point. A trajectory is generated in which the spacecraft 
maintains a certain ballistic coefficient Cb1 until a time tswap, Cb2 until 
tterm, and Cbtem until the de-orbiting point, fixed at an altitude of 70 km. 
The adopted procedure is based on the estimation of the control pa
rameters, Cb1, Cb2, and tswap to reduce the final error between the desired 
and the evaluated de-orbiting point. However, this procedure only at
tempts to minimize the final error on the de-orbiting point without 
considering the maneuver duration. 

In [27], the ballistic coefficient profile to guarantee landing in a 
specific location is generated using the optimization tool by NASA: 
Program to Optimize Simulated Trajectories II. However, this algorithm 
is characterized by some weaknesses including the lack of convergence 
and performance in some cases. Additionally, the optimizer is not tuned 
to the specific problem. The work proposed here perfectly fits in this 
scenario, proposing a novel minimum-time optimization algorithm for a 
ballistic de-orbiting from a Low Earth Orbit (LEO) to the re-entry 
interface. The formulation is written in terms of modified equinoctial 
parameters [28–30], which results particularly suitable in cases of tra
jectory analysis and optimization, even in the case of large time scales. 
This formulation has been widely used in different scenarios [31–36] but 
has yet to be utilized for a de-orbiting scenario until this work. The 
optimization problem is solved with the software GPOPS-II [37,38] 
using an hp adaptive Gaussian quadrature orthogonal collocation 
method [37–40]. The goal is to get minimum-time de-orbiting trajec
tories ensuring desired values of altitude, latitude, and longitude at the 
re-entry interface with high accuracy. The problem is formulated as a 
single-stage optimization, considering the exposed surface of the 
re-entry object as the control variable. The cost function to be minimized 
is the final time while the desired final altitude is guaranteed by defining 
an event constraint to impose its value in an acceptable range. The 
latitude and longitude values are not directly imposed in the optimiza
tion problem, but a novel algorithm is implemented to find the optimal 
control problem parameters, in particular the final value of true longi
tude and the number of its cycles, which ensure the desired values. An 
intelligent initial guess of the solution is considered, solving the 
de-orbiting problem for a constant intermediate value of the control 
parameter. 

As a conclusion, this work provides a novel optimization algorithm 
able to get minimum-time de-orbiting trajectories from different 
possible initial conditions to a desired point at the re-entry interface. The 
identification of a common trend of solutions along an infinite-shaped 
pattern allows the possibility to model a wide range of missions, 
involving different initial conditions and satellites. 

Section 2 describes the minimum-time optimal control problem 
formulation, explaining the equations of the dynamics, the boundary 

conditions, the cost function, and the initial guess generation. Section 3 
focuses on the novel algorithm to assess the optimal control problem 
parameters that guarantee the desired values of latitude and longitude. 
Section 4 presents the algorithm results when applied in different cases 
and discussion of the results, while Section 5 provides the main con
clusions of the work. 

2. Optimal control problem formulation 

The goal of this research is to obtain minimum-time de-orbiting 
trajectories for a satellite de-orbiting from a Low Earth Orbit (LEO) to a 
desired re-entry interface point, producing the desired altitude, latitude, 
and longitude values at the re-entry interface with high accuracy. The 
problem is formulated as a single-stage optimization, based on a hp 
adaptive Gaussian quadrature orthogonal collocation method [37–40] 
and is solved with the MATLAB software GPOPS-II [37,38], considering 
the exposed surface of the de-orbiting object as the control variable. 

2.1. Dynamics equations 

The dynamics of the problem is described in terms of modified 
equinoctial orbital parameters (p, f, g h, k, L), particularly useful for 
trajectories analysis and optimization [28–30]. They are related to the 
classical ones by the following equations: 

p= a
(
1 − e2) (1)  

f = e cos (ω+Ω) (2)  

g= e sin (ω+Ω) (3)  

h= tan (i / 2)cos Ω (4)  

k= tan (i / 2)sin Ω (5)  

L=Ω + ω + θ (6)  

where L is the true longitude, representing a parameter of interest in the 
current optimization algorithm. Its definition refers to a fixed direction, 
the First Point of Aries, implying its value repetition after 2πn, where n is 
an integer. The differential equations of motion of the orbiting satellite 
are given by the following: 

ṗ=
dp
dt

=
2p
w

̅̅̅
p
μ

√

Δt (7)  

ḟ =
df
dt

=

̅̅̅
p
μ

√ [
Δr sin L+ [(w+ 1)cos L+ f ]

Δt

w
− (h sin L − k cos L)

gΔn

w

]

(8)  

Nomenclature 

a Semi-major axis 
CD Drag coefficient 
e Eccentricity 
f, g Modified equinoctial parameters related to eccentricity 
h, k Modified equinoctial parameters related to inclination 
Jk kth zonal gravity coefficient 
H Altitude 
i Orbital inclination 
L True longitude 
m Mass 
p First modified equinoctial parameter 

Pk kth order Legendre polynomial 
r Geocentric position of satellite 
Re Radius of Earth 
S Exposed surface 
θ True anomaly 
Φ Geocentric latitude 
ω Argument of perigee 
ωe Earth angular velocity 
Ω Right ascension of ascending node 
μ Gravitational parameter 
ρ Atmospheric density 
∞S Set of optimal control problem solutions for a fixed final 

true longitude  
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ġ=
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=
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ḣ=
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=
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p

)2
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w

̅̅̅
p
μ

√

(h sin L − k cos L)Δn (12)  

where: 

w = 1 + f cos L + g sin L (13)  

r =
p
w

(14)  

α2 = h2 − k2 (15)  

s =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + h2 + k2

√
(16) 

A change of independent variable from time to true longitude is 
applied to reduce computational cost. This solution has been considered 
also in other similar optimization problems with large time scales [33, 
36]. The terms Δr, Δt and Δn are the non-two body perturbations in 
radial, tangential, and normal directions. The first one is directed along 
the geocentric radius vector of the satellite measured positively away 
from the geo-center. The tangential direction is perpendicular to the 
radius vector and is defined as positive in the orbital motion direction. 
The normal direction is positive along the angular momentum vector of 
the satellite orbit. The overall acceleration term, Δ, is modelled as: 

Δ=Δg + ΔD (17)  

where Δg and ΔD are the gravitational acceleration due to Earth 
oblateness and the contribution due to aerodynamic drag respectively. 
In relation to the first term, the non-spherical gravitational acceleration 
can be expressed as: 

g= gN îN − gr îr (18)  

where: 

îN =
êN −

(
êT

N îr
)

îr

‖êN − (êT
N îr )̂ir‖

(19) 

And 

êN = [ 0 0 1 ]T (20)  

with the subscript N identifying the local north direction while r the 
radial one. The contributions due to the zonal gravity effects of J2, J3 and 
J4 are given by the following formulation: 

gN = −
μ cos φ

r2

∑4

k=2

(
Re

r

)k

P′

kJk (21)  

gr = −
μ
r2

∑4

k=2
(k+ 1)

(
Re

r

)k

PkJk (22)  

where μ is the gravitational parameter, r the geocentric distance of the 
satellite, Re is the equatorial radius of the Earth, φ the geocentric lati
tude, Jk the zonal gravity coefficient, and Pk is the kth order Legendre 
polynomial. Therefore, the acceleration due to Earth’s oblateness in 
rotating coordinates is: 

Δg =QT g (23)  

where Q is the transformation matrix between rotating and Earth 
Centered Inertial (ECI) coordinates. Its columns are respectively defined 
as: 
[
ir =

r
‖r‖

, it = in × ir, in =
r × v
‖r × v‖

]
(24) 

A similar approach is followed for the aerodynamic drag acceleration 
term ΔD, which has been modelled as: 

ΔD =QT ad (25)  

where ad is the acceleration due to drag in the ECI reference frame and is 
given by: 

ad = −
1

2m
ρSCDv2 (26)  

in which m is the mass of the satellite, ρ is the atmospheric density, CD is 
the drag coefficient and v is the spacecraft to atmosphere relative ve
locity, defined considering the atmosphere rigid and rotating with the 
Earth: 

v=V − ωe × r (27)  

where ωe is the angular velocity of the Earth. In the optimal control 
problem formulation, the control variable is the exposed surface, S, 
which can be modulated to minimize the cost function. The atmospheric 
density has been modelled as exponential, considering the altitude 
variation, to reduce the computational cost of simulations. However, the 
case analyzed in paragraph 4.2 has been solved considering the density 
model NRLMSISE-00, showing a successful outcome even in this case. 

2.2. Optimal control problem setting 

The initial conditions of the problem are defined in terms of classical 
orbital elements (a, e, i,Ω,ω, θ) and then transformed into equinoctial 
ones with equations (1–6). The final values of the state variables are free, 
except for the true longitude for which a specific value is imposed, 
resulting from the algorithm explained in section 3. In the optimal 
control problem, the final time is defined as the terminal cost function to 
be minimized: 

J = tf (28) 

To ensure the satellite reaches a desired de-orbiting point, different 
conditions are imposed on the altitude, latitude, and longitude. The 
definition of an event constraint on the altitude guarantees its value is 
within an acceptable range. It is defined as: 

H = r − Re (29)  

with its value constrained in the interval [101 km, 103 km], acceptable 
for a de-orbiting point on the re-entry interface. The application of the 
proposed algorithm guarantees the desired final values of latitude and 
longitude. It attempts to define the optimal control problem parameters, 
particularly the final true longitude and the number of its complete 
cycles, to obtain the desired latitude and longitude values. 

The optimal control problem is based on an intelligent initial guess of 
the solution, relying on the analytical solution of the problem with an 
intermediate value of the control variable. 

3. Algorithm description 

This section describes the algorithm to find the optimal control 
problem parameters guaranteeing the desired latitude and longitude at 
the de-orbiting point. They rely on the final value of true longitude and 
its complete cycles. The algorithm is based on the definition of a 
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specified final date chosen by user at which the satellite is required to 
reach the desired de-orbiting point. The subsequent de-orbiting time 
assessment allows the evaluation of the corresponding initial date. The 
following subsections describe the steps leading to the final definition of 
the complete algorithm. 

3.1. Class of solutions 

The oscillatory nature and the non-continuity of latitude and longi
tude during de-orbiting have not made it possible for their direct 
implementation in the cost function of the optimal control problem. 
Therefore, an alternative approach was found to guarantee their values 
remain in a desired range. To that aim, a parametric analysis has been 
completed to solve the optimal control problem, using the initial con
ditions provided in Table 1, for different values of final true longitude 
and its complete cycles, resulting in the class of solutions in Fig. 1. The 
complete cycles of true longitude identify the number of times its value 
is repeated from the first solution, where the control variable value is 
almost the maximum, to the final one. It is possible to estimate the 
complete cycles interval by carrying out analytical simulations with the 
highest and lowest values of the control variable, which is the exposed 
surface S in the current case. 

The evolution of the resulting latitude-longitude pairs is represented 
by varying the final true longitude and its complete cycles. Each curve 
results from the optimal control problem solution for a fixed value of 
final true longitude and a variable number of cycles, increasing towards 
the direction of the black arrows. The solutions are characterized by 
latitude values between negative inclination and positive inclination 
accordingly. The longitude can achieve values between 0◦ and 360◦ and 
exhibits an increasing trend with true longitude, as identified by the 
vertical grey arrow to the right of the graph. In fact, each curve refers to 
a specific final value of true longitude, increasing with the direction of 
the grey arrow in Fig. 1. Once a desired de-orbit latitude-longitude pair 
is identified, only a finite number of curves can give a solution. Conse
quently, the search area for the final true longitude of the solution is 
obtained. 

3.2. Influence of the Right Ascension of Ascending Node on the solution 

This paragraph discusses the effect of different initial values of the 
Right Ascension of Ascending Node, Ω, on the solution. To this aim, 
optimal simulations are computed considering the initial conditions in 
Table 1, with the exception of Ω, varying in the range [50◦, 350◦]. The 
final fixed value of true longitude has been randomly chosen to be 121◦. 
Fig. 2 represents the evolution of latitude-longitude optimal pairs for the 
different initial values of Ω. A combination of all curves in the same 
graph is also reported in Fig. 2 (h). 

The combination of all the solutions (Fig. 2 (h)) results in an infinite- 
like shape, from now on defined as ∞S, centered at a latitude of 0◦ and a 
longitude dependent on the final value of true longitude. The same 
analysis has been repeated for different final values of true longitude to 
investigate its effect on the evolution of the optimal latitude-longitude 
pairs. Fig. 3 reports the ∞S corresponding to the solutions for the 
following final values of true longitude: 64◦, 121◦, 288◦ and 351◦. These 
values have been chosen to clearly demonstrate the different ∞S in the 

plane, without overlapping. 
Fig. 3 shows that different final values of true longitude correspond 

to a rigid translation of ∞S in the longitude-latitude plane without 
changing its shape. The only differences between each case are the 
longitude value corresponding to the ∞S center and the starting point, 
identified by the red point, representing the first solution for the lowest 
value of Ω. In conclusion, a different initial Ω will result in a solution 
motion along an ∞S with latitude values between negative inclination 
and positive inclination. Different final values of true longitude corre
spond to a rigid vertical translation of ∞S in the longitude-latitude plane 
without changing its shape. 

3.3. Effect of semi-major axis on the solution 

This subsection discusses the influence of the semi-major axis, a, on 
the solution. Following the previous approach, optimal solutions are 
computed considering the initial conditions in Table 1 for a fixed final 
true longitude, randomly chosen to be 60◦, and a variable semi-major 
axis. Fig. 4 compares the different solutions, with the black arrows 
identifying the increasing values of true longitude cycles. 

The graphs in Fig. 4 highlight a similar trend as seen when observing 
Ω. In fact, because of semi-major axis variations, the solution will move 
along an ∞S centered at a latitude of 0◦, exhibiting values between 
negative inclination and positive inclination. Additionally, the greater 
the semi-major axis a, the higher the number of feasible longitude- 
latitude couples, as shown in Fig. 4(a–c). Since the latitude and longi
tude upper and lower bounds do not change, the ∞S shape and di
mensions of the result are not affected by semi-major axis. 

3.4. Effect of orbital inclination on the solution 

This paragraph investigates the effect of orbital inclination, i, on the 
optimal control problem solution. To this aim, optimal solutions are 
computed considering the initial conditions in Table 1, fixing a final 
value of true longitude of 60◦, and varying both Ω and i to investigate the 
influence of i on the ∞S. Fig. 5 represents the corresponding evolution of 
the solutions. The ∞S result uniformly scales with the latitude values 
between negative inclination and positive inclination while the center 
position is not affected. The Δ parameter represents the interval of 
longitude values corresponding to a specific value of orbital inclination. 
It exhibits a parabolic trend with the inclination starting from 0◦ for an 

Table 1 
Initial conditions correspondent to the class of optimal 
solutions.  

Initial orbital parameter Value 

a0 6680 km 
e0 0.0007 
i0 51.64◦

ω0 130◦

θ0 80.8◦

Ω0 300◦

Fig. 1. Example of class of optimal solutions, for different values of final true 
longitude and its complete cycles. 
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Fig. 2. Evolution of the optimal control problem solution as function of Ω.  
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equatorial orbit, as shown in Fig. 6. Therefore, it can be estimated using 
only the knowledge of orbital inclination without carrying out the 
simulations. 

As a result, a change in orbital inclination will only affect the di
mensions of ∞S but not its center position. The latter can be evaluated by 
carrying out an optimal control simulation for an equatorial orbit, 
varying the final true longitude values between 0◦ and 360◦. Fig. 7 
provides the ∞S centers trend in the true longitude-longitude plane, 
where the jump occurring at x0 represents the condition in which the 
longitude passes from 360◦ to 0◦ again. The graph shows a linear trend, 
with a unitary angular coefficient and known term q equal to the 
longitude at the de-orbit point, evaluated for an equatorial orbit at 
0◦ value of true longitude. The second part of the curve is also linear 
with unitary angular coefficient and starting from x0. In this graph, the 
inclination effect will result in two parallel lines shifted by a quantity 
equal to Δ

2 referring to the main line, corresponding to the center posi
tion. Therefore, once the desired longitude value at the re-entry inter
face is chosen, it is possible to get an estimation of the solution’s true 
longitude interval range. The bounds of the interval can be evaluated by 
looking at the intersection of the two dashed lines with the desired 
longitude value. 

3.5. Effect of different final date on the solution 

This section describes the effect of the final date on the results. To 
this aim, the graph in Fig. 7 is recreated, varying each term of the final 
date in Coordinated Universal Time (UTC), as year, month, day, hour, 

Fig. 3. Evolution of the optimal control problem solution as function of Ω, for 
variable values of final true longitude. 

Fig. 4. Evolution of optimal control problem solution as function of semi-major axis a.  
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minute, and second, to investigate both their individual and combined 
effect on the solution. As shown in Fig. 8, a variation of each parameter 
results in a horizontal rigid translation of the graph, whose direction is 
identified by the black arrows. The final year (Fig. 8 (a)) and second 
(Fig. 8 (f)) have a negligible influence on the curve, a moderate effect is 
given by final minute (Fig. 8 (e)) and day (Fig. 8 (c)), while the greatest 

contribution results from a different final month (Fig. 8 (b)) and hour 
(Fig. 8 (d)). Table 2 summarizes the horizontal translation amount in 
each case. Their combination will always result in a rigid horizontal 
translation of the curve in the true longitude-longitude plane. As a 
result, the considerations made at the end of the previous paragraph are 
general, and the graph in Fig. 7 can be defined for any final date using a 
single simulation for an equatorial orbit at 0◦ value of true longitude, to 
find the intercept of the line. 

3.6. Algorithm implementation 

The previous analysis provided a comprehensive assessment of the 
influence of the different initial conditions and final date on the optimal 
control problem solution, summarized in Table 3. 

The previous analysis led to the definition of a general algorithm to 
find an optimal solution, given a set of initial conditions and a specific 
final date. It can be summarized in the following steps:  

1. Determination of true longitude cycles interval by evaluating 
optimal solutions with the lowest and highest value of the control 
variable. They will correspond to the minimum and maximum time 
cases.  

2. With reference to Fig. 9, determination of the true longitude interval 
where to search for the solution with the following procedure:  
a. Simulation running for an equatorial orbit at 0◦ value of final true 

longitude, to determine the intercept q of the line. 

Fig. 5. Evolution of optimal control problem solution as function of orbital inclination i.  

Fig. 6. Parabolic trend of Δ
2 as function of orbital inclination i.  

Fig. 7. Schematization of centers trend in longitude-true longitude plane, considering the effect of inclination.  
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b. Definition of the line equation with angular coefficient equal to 1 
and intercept q as: y = x+ q.  

c. Determination of the abscissa x0 correspondent to y = 360◦, 
where the gap occurs. 

d. Definition of the equation of the second part of the line, consid
ering that the angular coefficient is the same as the first part: y =

x − x0.  
e. Definition of lower and upper bounds Δ

2 given by the orbital 
inclination. Their intersection with the line y = desired longitude 

Fig. 8. Influence of a different final date.  

Table 2 
Horizontal rigid translation entities varying year, month, day, 
hour, minute and second of final date.  

Date Rigid translation amount 

One year 0.25◦

One month 30◦

One day 5◦

One hour 15◦

One minute 0.25◦

One second 0.0040◦
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will give the true longitude interval where to search for the so
lution, identified by the two yellow stars in Fig. 9.  

3. Using the range estimated in 2.e, start an optimization cycle with an 
accuracy of 10− 4, varying the number of complete revolutions. Start 
from the lowest value of the interval and compare the estimated 
longitude and latitude with the desired ones. Search for a possible 
couple of latitude and longitude respecting the threshold imposed by 
the user. At this point two different scenarios can occur:  
a. If the condition at point 3 is satisfied, repeat the simulation with a 

higher accuracy, 10− 6. The optimal solution has been found.  
b. If the condition at point 3 is not satisfied, repeat simulations for 

increasing values of true longitude until condition 3.a is satisfied. 

This algorithm is valid even in cases of different masses and drag 
coefficients of the satellites, showing its generalization and robustness. 
Fig. 10 represents a block diagram of the algorithm. 

4. Results 

This section describes the results of the algorithm application. There 
are two cases studied in this research. First, a discussion on a sample case 
study explains the steps up to the final solution. Then, a subsequent 
resolution of another case comparing both the current algorithm and the 

one proposed in Refs. [24–26], which was not optimized. The latter 
highlights the ability of this algorithm to obtain a desired geolocation 
point at the re-entry interface in minimum time. A conclusive Monte 
Carlo analysis demonstrates the robustness of the algorithm and suc
cessful outcome in a wide range of conditions. 

4.1. Application to a sample case study 

This case study represents a mission in which a satellite de-orbits 
from a Low Earth Orbit (LEO) with the simulation conditions summa
rized in Table 4. The desired de-orbit point occurs at an altitude value of 
102 km, a latitude of 30.4◦, and a longitude of 29.84◦. The final epoch 
has been fixed on 30/06/2022 at 08:15:00 UTC. 

The estimated intercept q is 30.39◦, resulting from the solution for an 
equatorial orbit at a zero final value of true longitude. The Δ value, and 
the correspondent dashed lined, are evaluated using the graph in Fig. 6 
for an orbital inclination of 51.84◦. The intersection between the narrow 
lines and the desired longitude value of 29.84◦ in Fig. 11 produced the 
true longitude solution interval: [58.0◦; 85.0◦]. In particular, the desired 
value of longitude is represented by the horizontal red line, the dashed 
lines refer to the Δ corresponding to the orbital inclination, and the 
yellow stars identify the bounds of true longitude interval, in which to 
search for the solution. The application of the iterative procedure of 
point 3 from the algorithm described in subsection 3.6 determined a 
final value of true longitude equal to 84.0◦, which lies in the range 
estimated previously. Figs. 12–19 provide the results of the optimal 
control problem, displaying the trends of the variables of interest as 
function of time, including a zoom to better appreciate oscillating 
regions. 

The control variable exhibits a bang-bang-like optimal profile, seen 
in Fig. 12, with values varying between the upper and lower bounds of 
the surface. Between the fifth and the sixth day, some oscillation occurs 
before the surface stabilizes to its lowest value. The altitude exhibits a 
decreasing trend (Fig. 13 (a)) characterized by the typical de-orbiting 
oscillations (Fig. 13 (b)) with a change in behavior corresponding to 
surface variation. Something similar is observed for the velocity 
(Fig. 14), exhibiting an increasing trend. Parameters p (Fig. 15), f 
(Fig. 16), and g (Fig. 17) are characterized by an oscillatory profile with 
a change in behavior in correspondence with the control variable 
change. State variables h and k are characterized by less oscillation, seen 
in Figs. 18 and 19. The de-orbiting time duration is 19 days, 9 h, 25 min, 
and 45 s, with a corresponding initial date of 10/06/2022 at 22:49:15 
UTC. 

Table 3 
Summary of the influence of different parameters on the optimal control prob
lem solution.  

Parameter Effect on the solution 

Final value of true 
longitude 

Different final values of true longitude reflect in a vertical 
translation of each ∞S in the latitude-longitude plane. 

Ω0 Different values of Ω0 correspond to a different position of 
the optimal curve solutions along the correspondent ∞S. 

i0 Different values of i0 will uniformly scale each ∞S without 
changing its centre position. The Δ exhibits a parabolic 
trend with the inclination, starting from an equatorial orbit 
where the ∞S degenerates to a point correspondent to its 
center. 

a0 Different values of a0 have a similar effect as Ω0, implying 
the solution curve translation along the correspondent ∞S. 
In addition, the greater a0, the higher latitude-longitude 
pairs possible to cover. 

ω0,θ0, e0 Negligible influence 
Final date Different final dates will correspond to a rigid vertical 

translation of ∞S in latitude-longitude plane, without 
affecting its shape.  

Fig. 9. Schematization of the procedure to evaluate the true longitude search interval.  
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4.2. Comparison with another de-orbiting algorithm 

The ability of the algorithm to generate optimal minimum-time 
trajectories is further demonstrated by solving another case study and 
comparing the de-orbiting time with the one resulting from the appli
cation of the algorithm described in Refs. [24–26]. For consistency be
tween the two, the density model NRLMSISE-00 is also considered in the 
current algorithm, despite the higher computational cost. Table 5 
summarizes the initial conditions of the case study in question. About 
the simulation epoch, after defining the following final date, 
30/01/2015 at 08:15:00 UTC, the evaluation of the corresponding 
initial date is calculated using the de-orbiting time, resulting from the 
algorithm proposed in this paper. The algorithm in Refs. [24–26], which 
is based on a specific initial date, has been subsequently applied to the 
same case study. 

The application of the current algorithm results in a de-orbiting time 
of 10 days, 23 h, 49 min, and 7 s. The corresponding initial date eval
uated is 19/01/2015 at 08:25:53 Universal Central Time (UTC). The 
same case study resolved with the algorithm in Refs. [24–26] results in a 
de-orbiting time of 17 days, 23 h, 2 min, and 47 s. In conclusion, a 
considerable time reduction is achieved further demonstrating the 
ability to get minimum-time optimal trajectories. 

4.3. Monte Carlo analysis 

The robustness and generalization of the algorithm are proven by its 
successful outcome in a wide range of scenarios, produced by a Monte 
Carlo analysis carried out over 500 cases. A uniform distribution of the 
initial mean orbital elements corresponding to a Low Earth Orbit (LEO) 
is considered, with an epoch range of five years. Table 6 specifies the 
initial conditions and parameters range, as well as their probability 
distributions. The maximum acceptable error has been set at 1.5%. 

Fig. 20 shows the longitude-latitude pairs resulting from the Monte 
Carlo analysis. The light red box represents the zone where the 

Fig. 10. Block diagram of the algorithm.  

Table 4 
Simulation initial conditions and satellite characteristics for the first case study.  

Simulation initial conditions and satellite characteristics for the first case study 

a0 6680 km 
e0 0.0007 
i0 51.84◦

ω0 20◦

θ0 40◦

Ω0 150◦

m 40 kg 
CD 2 
[Smin; Smax ] [0.2 m2;1.9 m2]

Fig. 11. Schematization of the procedure to find the true longitude search in
terval, applied to the sample case study. 
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Fig. 12. Control variable profile as function of time (a), with a zoom (b) to appreciate the oscillations.  

Fig. 13. Optimal profile of altitude (km) as function of time (a), with a zoom (b) to appreciate the oscillations.  

Fig. 14. Optimal profile of velocity (km/s) as function of time (a), with a zoom (b) to appreciate the oscillations.  
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Fig. 15. Optimal profile of the p parameter (km x 103) as function of time (a), with a zoom (b) to appreciate the oscillations.  

Fig. 16. Optimal profile of the f parameter as function of time (a), with a zoom (b) to appreciate the oscillations.  

Fig. 17. Optimal profile of the g parameter as function of time (a), with a zoom (b) to appreciate the oscillations.  
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maximum error on latitude and longitude is lower than 1.5%, the 
threshold imposed by the user. The successful outcome of the algorithm 
is testified by all resulting pairs included in this region. 

The analysis showed the validity and robustness of the algorithm, 
further demonstrating its ability to successfully model a wide range of 
conditions. In addition, even if the maximum threshold imposed by the 
user is 1.5%, most of the longitude-latitude resulting pairs are 

characterized by an error of less than 0.5%, proving the high precision of 
the results. 

5. Conclusions 

This paper presents a novel algorithm to obtain minimum-time de- 
orbiting trajectories from a Low Earth Orbit (LEO) to a desired geo
location at re-entry interface. The formulation in terms of modified 
equinoctial orbital parameters and the independent variable change, 
from time to true longitude, managed the large time scale and the 
oscillatory nature of the problem. The problem is solved using a hp 

Fig. 18. Optimal profile of the h parameter as function of time (a), with a zoom (b) to appreciate the oscillations.  

Fig. 19. Optimal profile of the k parameter as function of time (a), with a zoom (b) to appreciate the oscillations.  

Table 5 
Simulation initial conditions and satellite characteristics for the comparison 
between the two algorithms.  

Simulation initial conditions and satellite characteristics for the comparison between 
algorithms 

a0 6680 km 
e0 0.0007 
i0 51.84◦

ω0 10◦

θ0 20◦

Ω0 190◦

m 40 kg 
CD 2 
[Smin; Smax ] [0.2 m2;1.9 m2]

Table 6 
Parameters employed in Monte Carlo analysis.  

Parameter Range Probability distribution 

a [6670 km; 6720 km] Uniform 
Ω [0◦; 360◦] Uniform 
i [30◦ ; 70◦] Uniform 
ω [0◦; 360◦] Uniform 
e [0; 0.001] Uniform 
θ [0◦; 360◦] Uniform 
Epoch [31st December 2017; 31st December 2022] Uniform  
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adaptive Gaussian quadrature orthogonal collocation method and 
formulated as a single-stage optimization problem. The objective is to 
find a surface profile to minimize the final time, defined as a terminal 
cost function. An event constraint on the altitude guaranteed its desired 
value at the re-entry interface. The algorithm application allows the 
assessment of the optimal control problem parameters ensuring the 
desired values of latitude and longitude. The novelty of this work lies in 
the identification of a common trend of solutions along an infinite- 
shaped pattern which allowed algorithm generalization and the possi
bility to model a wide range of missions, involving different initial 
conditions and satellites. In addition, the possibility to reach a desired 
geolocation at the re-entry interface in a minimum time makes the work 
even more innovative. A Monte Carlo analysis highlighted its robustness 
and validity, showing its successful outcome in a wide range of condi
tions. Some future applications of the algorithm could deal with the 
generation of open-loop optimal trajectories which could be combined 
with other techniques, i.e., Artificial Neural Networks (ANNs), to get 
closed loop control. 
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