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I. Introduction

I N 1989, Leonard et al. [1] introduced the concept of using
differential drag at low Earth orbits (LEOs) for propellantless in-

plane spacecraft relative motion control. This method consists of
varying the aerodynamic drag experienced by different spacecraft, by
opening or closing a set of drag surfaces, or varying the attitude of
asymmetrical spacecraft, thus generating differential accelerations
between them. Since there is no propellant exhaust and no plume
impingement, highly sensitive onboard sensors may operate in a
cleaner environment. Moreover, since the relative accelerations
generated by the drag forces are small, equipment sensitive to shocks
or vibrations may benefit from the use of differential drag, assuming
that drag control devices operate without exciting vibration modes of
the spacecraft.
The main limitation of using differential drag for relative motion

control is that one must operate at a relatively low LEO. In this
regime, differential drag forces can be made large enough to achieve
effective control. However, this increased drag force results in faster
orbit decay, and thus a more limited mission life. However, these
formation-flying orbits are of interest since they can be used for
communications, astronomical, atmospheric, and Earth observation
applications [2,3].
In this work, a chaser and a target spacecraft are considered. The

reference frame commonly used for spacecraft relative motion is the
local-vertical/local-horizontal (LVLH) reference frame, centered at
the target spacecraft, where x points from Earth to the target space-
craft, y points along the track of the target spacecraft, and z completes
the right-handed frame. The state of the system consists of the
position and velocity, in the LVLH frame, of the chaser spacecraft
relative to the target spacecraft.
Atmospheric differential drag is projected on the alongtrack direc-

tion and can provide effective control only in the orbital plane (x
and y). The control law is based on the assumption that the control is
either positive maximum (�1), which implies chaser maximizing
(opening) its drag surface and target minimizing (closing) it; negative
maximum (−1), which implies chaser maximizing (opening) its drag
surface and target minimizing (closing) it; or zero (0), which implies

same surface on chaser and target: that is, no differential acceleration,
as previously done in [4–6].
In previous work [7], a Lyapunov controller was developed for

maneuvering using differential drag. An analytical expression for the
magnitude of the differential drag acceleration that ensures stability
was also found. Partial derivatives of this critical value in terms ofQ
(Lyapunov equation matrix) and Ad (reference linear dynamics
matrix) were presented in [8,9] for the case in which the controller
acts as a regulator. Furthermore, an adaptation that chooses an
appropriate positive definite matrix P in a quadratic Lyapunov
function, by modifying the Q and Ad matrices based on the partial
derivatives, was developed. Nonetheless, the adaptation was limited
to regulation maneuvers, since the partial derivatives were developed
for that case only.
The foremost contribution of this work consists of the complete

analytical expressions for the mentioned partial derivatives for the
general case in which the spacecraft are tracking a linear reference
model, which can also be used for tracking a guidance trajectory or a
desired final state (regulation). Simulations validate the adaptive
Lyapunov controller for a fly-around maneuver followed by a long-
term formation-keeping period and a rendezvous maneuver via the
Systems Tool Kit (STK®). An assessment of the performances of the
designed adaptive Lyapunov controller and a comparison versus a
nonadaptive Lyapunov controller [7] are shown.

II. Linear Reference and Nonlinear Models

The linear reference model is obtained by stabilizing the
Schweighart and Sedwick dynamics [10] using a linear quadratic
regulator (LQR). The resulting model is represented by

_xd � Adxd �Bud; Ad � A −BK; ud � Kxt (1)

where x � � x y _x _y �T , K is a constant vector found by solving
the LQR problem, xt is the desired guidance, A is the state matrix
from the Schweighart and Sedwick dynamics [10], xd is the desired
reference dynamics tracking the guidance, andB � � 0 0 0 1 �T .
The nonlinear relative motion dynamics used for the development

of the controller is expressed as
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where rT is the magnitude of the position vector of the target,ω is the
angular velocity of the LVLH frame, and aJ2x and aJ2y are the
differential accelerations caused by the J2 perturbation. Note that f
contains the Keplerian nonlinear dynamics and the J2 perturbation
but not the drag acceleration. The goal of using differential drag is to
drive the state x to xd without using propellant.
It should be noted that the adaptive controller uses the truncated

nonlinear dynamics representation of Eq. (2) to calculate the critical
value and the partial derivatives shown later on in Eqs. (7), (16), and
(18). In the simulations, themotion of the spacecraft is modeled using
STK’s High-Precision Orbit Propagator (HPOP).
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III. Adaptive Lyapunov Control

A. Lyapunov Control Law

The Lyapunov function and its time derivative are given by [7]

V � eTPe; e � x − xd (3)

_V � −eTQe� 2Δ (4)

where P and Q are symmetric positive-definite matrices; e is the
tracking error vector; and Δ, β, and δ are given by the following
expressions:

Δ � βû − δ; β � eTPBaDrel;

δ � eTP�Adx − f�x� �Bud�; û �

8>><
>>:
1

0

−1

(5)

As long as Δ < 0, the nonlinear dynamics will track the desired
trajectory. However, the system cannot be guaranteed to beLyapunov
stable if δ is positive and has a higher magnitude than β. The
magnitude of β is linearly dependent on aDrel, which indicates that, if
aDrel is too small (i.e., the density and/or the differential in the
ballistic coefficients are too small), the system will be unstable.
The control strategy proposed in [7] is used herein [Eq. (6)]. At this

stage, it only guarantees that the product βû is negative:

û � −sign�β� � −sign�eTPB� (6)

The following section focuses on guaranteeing a negative time
derivative of the Lyapunov function.

B. Critical Value for the Differential Drag

An analytical value for the magnitude of the differential drag
ensuring Lyapunov stability (critical value) was developed by the
authors in [8,9]. The expression for this value is found by imposing
Δ < 0 [Eq. (5)]. For the case in which the nonlinear dynamics is
tracking the reference dynamics, the expression for the critical value
becomes

aDcrit �
eTP�Adx − f�x� �Bud�

jeTPBj (7)

This expression is also valid for the cases in which the nonlinear
dynamics is tracking a guidance trajectory or just being regulated.

C. General Partial Derivatives

Starting from Eq. (7), the critical value is rewritten as

aDcrit � η�P�ψ�Ad�;

η�P� � eTP

jeTPBj ; ψ�Ad� � Adx − f�x� �Bud (8)

where matrix P is a function of matricesAd andQ via the following
Lyapunov equation:

−Q � AT
dP� PAd (9)

which, as shown in [11], can be rewritten as

Pv�−Av
−1Qv;

Av�I4×4⊗Ad�Ad⊗I4×4; Pv�vec�P�; Qv�vec�Q� (10)

In [8,9], the partial derivatives ofP in terms ofAd andQwere found;
these derivatives are used in the following developments and can be
expressed as
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The first step in generalizing the method is to find the partial
derivative of the critical value for the case in which the nonlinear
system is tracking the reference dynamics [shown in Eq. (8)] in terms
ofAd. First, the partial derivative of ψ in terms ofAd is found using
the matrix derivative product rule found in [11], yielding

∂ψ�Ad�
∂Ad

� U16×16�I4×4 ⊗ x� (13)

Using again thematrix product rule, the partial derivative of η in terms
of P is found to be
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∂P
� �I4×4 ⊗ eT�U16×16

�
I4×4 ⊗

I4×4
jeTPBj

�

− �I4×4 ⊗ eTP�
�
�eTPB��eTB�
jeTPBj3

�
(14)

Subsequently, using the matrix chain rule defined in [11], the partial
derivative of η in terms of Ad is found to be
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Finally, using the matrix product rule and Eqs. (11, 13–15), the
general partial derivative of the critical value in terms ofAd is found
to be

∂aDcrit
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The second step for generalizing the method is to find the partial
derivative of the critical value shown in Eq. (8) in terms of Q. First,
using Eqs. (12) and (14), and the matrix chain rule, the partial
derivative of η in terms of Q is found:

∂η�P�
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3 �T1��−A−1

v �T��
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1

�
∂η�P�
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(17)

The partial derivative of ψ in terms ofQ is a zeromatrix since ψ is not
a function of Q. Finally, using Eq. (17) and the matrix chain rule,
the general partial derivative of the critical value in terms of Q is
found to be

∂aDcrit
∂Q

� T−1
3 �T1��−A−1

v �T��
�
I4×4 ⊗ T−1

1

�
∂η�P�
∂P
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× �I4×4 ⊗ �Adx − f�x� �Bud�� (18)

The transformations T1, T2, and T3 and permutations matricesUm×n
andU1 are the same shown in [8,9]. Equations (16) and (18) are called
generalized partial derivatives since they were derived based on the
most general expression for the critical value, which corresponds to
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the case in which the nonlinear dynamics is tracking the reference
dynamics. However, these generalized partial derivatives can also be
used for the cases in which the nonlinear dynamics is tracking a
desired guidance or being regulated.

D. Adaptive Lyapunov Control Strategy

The adaptation used for matricesQ andAd is the same adaptation
presented in [8,9], which can be expressed as

ΔAij
Δt
� κA

�
−sign

�
∂aDcrit
∂Aij

�
δA

�
;

ΔQij
Δt
� κQ

�
−sign

�
∂aDcrit
∂Qij

�
δQ

�
(19)

where δA � 10−6, δQ � 10−6 (which are of the same order of
magnitude as elements in matrix Ad), and κA and κQ are defined by

κA �
(
1 if

�� ∂aDcrit
∂Aij

�� >�� ∂aDcrit∂Akl

��for i; j ≠ k; l
0 otherwise

;

κQ �
(
1 if

�� ∂aDcrit
∂Qij

�� >�� ∂aDcrit∂Qkl

��for i; j ≠ k; l
0 otherwise

(20)

This adaptation uses limited knowledge of the nonlinear dynamics,
since it requires the f�x� in Eq. (2); however, it does not require any
knowledge of the drag acceleration. Adapting matrices Q and Ad

implies adapting matrix P [see Eq. (9)] and affecting the control
law [Eq. (6)].

IV. Numerical Simulations Results

Numerical simulations are performed using STK’s HPOP, includ-
ing a full gravitational field model (based on spherical harmonics),
solar radiation pressure, and variable atmospheric drag using the
empirical NRLMSISE-00 model. NRLMSISE-00 is an empirical
model that includes variations on the density with altitude, as well as
with latitude, longitude, and solar and geomagnetic activity. In the
simulations, the adaptive Lyapunov controller using the generalized
partial derivatives was compared to a nonadaptive version, i.e., with
constant Q and Ad.
Both adaptive and nonadaptive Lyapunov controllers can be

implemented in the following configurations:
1) The controller is used to force the nonlinear system to directly

track a generated guidance trajectory (used for the fly-around and
formation-keeping simulations).
2) The controller forces the nonlinear system to track the trajectory

of the reference model that is tracking the generated guidance
trajectory (used for the rendezvous simulation).
3) The controller forces the nonlinear system to go to a desired final

state (regulation).
One key parameter for the implementation of the controllers is

the evaluation frequency for the control law [Eq. (6)]. The control
remains constant between two successive evaluation instants. The
control frequency is also the sampling frequency for the error e in
Eq. (6). In general, short waiting times between actuations (high
control frequencies) can give better tracking of the dynamics/
trajectory; however, they can also result in chattering in the control
action and are more expensive in terms of number of switches in the
control (control effort). In contrast, long waiting times (low control
frequencies) can result in less actuation but can produce large
tracking errors.
In practice, the upper bound for the control frequency is given by

the speed at which the drag surfaces can be deployed. If the control
frequency is lower than twice the largest frequency in the spacecraft
relative dynamics, then the e term in Eq. (6) will not be accurately
represented according to Shannon’s sampling theorem [12]. Thus,
twice the largest frequency in the spacecraft relative dynamics
constitutes a lower bound for the control frequency. Using the
approximation of linear relative dynamics (the Schweighart and

Sedwick dynamics [10]), the largest frequency isω∕2π, withω as the
orbital angular velocity, which for the initial orbit of the target (see
Table 1) has a value of 0.0011 rad∕ sec. Applying Shannon’s
sampling theorem [12] gives a lower bound for the control frequency
of 3.5 · 10−04 Hz. This implies approximately a minimum of two
actuation switches over a nominal orbit of 90min (approximately the
orbit’s duration at the target’s initial altitude). For the cases here
studied, this analysis imposes time intervals with constant control not
longer than 45 min. Below 45 min, one can choose trading off
between control effort (number of opening/closing) and tracking
accuracy.
For the simulations, the change in control configuration [Eq. (6)]

and the adaptation [Eqs. (16), (18), and (19)] are performed every
10 min for the rendezvous and every 5 min for the fly around and
formation keeping, and STK serves as propagator between control
changes. The 10 min waiting time between actuations used for the
rendezvous simulation gives the small drag forces enough time to
change the orbits of the spacecraft, and it avoids chattering in the
control action. The 5 min waiting time used for the fly-around and
formation-keeping simulations allows the spacecraft to maintain the
equilibrium orbit with smaller tracking errors while it still gives
enough time to for the drag to affect the orbits and prevents chattering.
The initial orbital elements of the target (center of theLVLH frame)

and other parameters for the numerical simulations are shown in
Table 1 (see also [7–9]). The target and chaser spacecraft are assumed
to be identical. It should be noted that the altitude of the orbit and the
maximum and minimum ballistic coefficients were selected so that
differential drag can serve as the control variable, overcoming the
other differential forces. Differential drag was previously demon-
strated to be a viable orbit control means up to 600 km [12], and
variations in the ballistic coefficient equal to or greater than the ones
chosen for the simulations presented herein can be found in planned
or existingmissions (see [13–15]). The chaser’s initial relative state is
shown in Table 2. For all simulations, the initial Q matrix was the
identity matrix times 10−2. It should be noted that, according to
Lyapunov stability theory, the only restriction on the initialQmatrix
is that it must be positive definite (see [16]).
The orbits of the target and chaser spacecraft are coplanar;

therefore, the position and velocity of the chaser relative to the target
on the z direction are assumed to be zero.

A. Fly-Around Maneuver and Formation Keeping

This simulation consists of two stages. In the first stage, the
spacecraft perform a fly-aroundmaneuver that ends in an equilibrium
relative orbit of the chaser around the target. In the second stage, the
spacecraft maintain this formation for over one week. In this

Table 1 Spacecraft parameters

Parameter Value

Target’s inclination, deg 98
Target’s semimajor axis, km 6778
Target’s right ascension of the ascending node, deg 262
Target’s argument of perigee, deg 30
Target’s true anomaly, deg 25
Target’s eccentricity 0
Target’s velocity vs, km∕s 7.68
Spacecraft mass m, kg 10
Smin � surface retracted, m2 0.3409
Smax � surface deployed, m2 2.8409
CD 2.2

Table 2 Initial conditions in the LVLH frame

Parameter Rendezvous Fly-around and formation keeping

x, km −1 0
Y, km −2 −4.25
_x, km∕s 4.83 · 10−07 0
_y, km∕s 1.70 · 10−04 0
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maneuver, both spacecraft start at the same orbit but with a difference
in their true anomalies. In the maneuver, the spacecraft follow a
guidance in the LVLH plane that leads to the equilibrium relative
orbit and thenmaintains it. This guidancewas obtained following the
method described in [17]. The simulations end 110 orbital periods
(roughly one week) after the guidance reaches the final equilibrium

orbit. Both the Lyapunov nonadaptive and adaptive controllers, with
the generalized partial derivatives, have been used in these simula-
tions. Figures 1–3 show the trajectories and tracking errors for the
first stage of the maneuver until two orbital periods after the
spacecraft reached the equilibrium relative orbit. Only two orbital
periods are shown to avoid having a congested image. Figure 4 shows
the normalized tracking error (the l2 normof e) for the second stage of
the maneuver (formation keeping). For this maneuver, anRLQR value
of 1018 was chosen, which was found by tuning the nonadaptive
controller.
Figures 3 and 4 show that the normalized tracking error is, for the

most part, smaller for the adaptive controller than the nonadaptive
during the fly-around stage and the formation-keeping stage. Since
the fly-around and formation-keeping simulations have the same
duration, the mean value of the normalized tracking error can be
calculated over the simulations. For the simulation that used the
nonadaptive controller, the mean value of the normalized tracking
error was 73.78, whereas the one that used the adaptive was 57.47,
which represents a reduction of 22.1% by using the adaptive
controller.

B. Rendezvous Maneuver

In this maneuver, the spacecraft have an initial difference in both
x and y directions. The objective of the maneuver is to drive both
relative position and velocity to zero. A guidance trajectory using the
method developed in [5] is used. In this simulation, the controller
forces the nonlinear system to track the trajectory of the reference
model, which is tracking the analytically generated guidance trajec-
tory. To illustrate the importance of the linear stable reference model,
two cases for thismaneuverwere simulated. In case 1, theRLQR value
used to obtain the initial Ad (RLQR � 1.6 · 1018) yields a linear
reference model that has slower dynamics than the actual nonlinear
system, whereas in case 2, the selected value (RLQR � 1.5 · 1017)
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Fig. 1 Fly-around stage and maneuver trajectory.
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Fig. 2 Fly-around stage, maneuver trajectory, and zoom at the
equilibrium relative orbit.
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Fig. 3 Fly-around stage and normalized tracking error (the l2 norm of e).
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yields a linear reference model that has faster dynamics than the
actual nonlinear system. The results of the simulation for this
maneuver can be seen in Figs. 5 and 6 for cases 1 and 2, respectively.
The maneuver is considered completed when within 10 m from the
target.
The normalized errors plots (Figs. 5 and 6, right) show that the

adaptive controller allows for maneuvers with shorter durations.
Figure 6 (right) shows that, in case 2, the normalized tracking error is,
for the most part, smaller for the adaptive controller than the non-
adaptive. In contrast, Fig. 5 (right) shows that, in case 1, the normal-
ized tracking error is, for the most part, smaller for the nonadaptive
controller than the adaptive. This behavior was not observed in any of
the other simulations, in which the use of the adaptive controller
resulted in smaller normalized errors during the maneuvers. This
anomaly is explained by the fact that the adaptation is designed for
reducing the critical value (which, as shown in Eq. (7), is a function of
the error among other parameters) and not the error itself; therefore,
there can be cases inwhich the adaptation can result in larger tracking
errors, but reducing, on the other hand, the maneuver’s duration and
control effort when a final point must be reached.

The results also indicate the importance of selecting a reasonable
initial linear reference model. As can be seen from the normalized
errors plots (see Fig. 5), the linear reference model used for case 1 is
easier to track (small normalized error); however, its use results in
significantly longer maneuver times. Conversely, the linear reference
model used for case 2 converges faster to the rendezvous state,
which makes it harder for the controller to track, thus producing a
large normalized error (see Fig. 6, right) but a shorter maneuver.
Depending on the desired control behavior (better tracking vs. shorter
maneuvers), slower or faster linear referencemodelsmay be selected.

C. Performance Assessment

The parameters used to evaluate the performance of the controllers
are the number of switches in the control, the duration of the maneu-
ver, themeans for the critical and actual values of the differential drag
acceleration, and the difference between these two values (control
margin). The actual value for the differential drag acceleration is
available from the atmospheric model used. In practice, this value
would not be known a priori; therefore, it is not used by the controller.
The trajectories of the spacecraft are different for the two controllers.
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Fig. 4 Formation-keeping stage and normalized tracking error (the l2 norm of e).
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Fig. 5 Rendezvous case 1: maneuver trajectory (left), and tracking errors (right; the l2 norm of e).
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This means that the spacecraft are flying through slightly different
regions of the thermosphere, with different densities. Hence, the
control margin is of interest since it subtracts the value of the actual
drag acceleration, enabling comparison of trajectories with different
densities.
As can be observed from the data in Table 3, the use of the adaptive

controller reduced the control effort required to perform the two
maneuvers with improvements of 5, 2.6, 48.1, and 2.7% for the fly-
around stage, formation-keeping stage, and cases 1 and 2 of the
rendezvousmaneuvers, respectively.Moreover, the adaptive control-
ler also reduced the duration of the maneuver with improvements
of 25.4 and 4.9% for cases 1 and 2 of the rendezvous maneuver,
respectively. There was no improvement in duration for the fly
around, since the simulation was not ended when within 10 m of the
desired final position but after 110 orbital periodswhen the spacecraft
reached the desired equilibrium relative orbit. Additionally, the
adaptive controller also was able to increase the control margin
with an improvement of 1.6, 0.6, 18.1, and 1.6% for the fly-around
stage, formation-keeping stage, and cases 1 and 2 of the rendezvous
maneuvers, respectively. As can be seen by comparing the results of
case 1 and case 2, the selection of the linear reference model (matrix
Ad) has a substantial impact on the performance of the Lyapunov
controller
Table 3 also shows that, for case 1, the actual value of the drag

acceleration was lower for the simulation that used the adaptive

controller than the one that used the nonadaptive, which indicates that
the adaptive controller had, on average, less control force (differential
drag acceleration) available to perform the maneuver, although the
adaptation still managed to obtain a larger control margin. This
explains why this simulation was the only one in which the normal-
ized tracking errors were larger for the adaptive controller than for the
nonadaptive. The difference in actual value of the drag accelerations
are caused by the differences in the evolution of the orbits of the
spacecraft: between the simulations with the adaptive and the
nonadaptive controllers.
As previously shown by the authors in [8,9], the implementation of

the adaptive controller yields improvements in terms of control effort,
maneuver duration, and control margin. Additionally, the use of the
general partial derivatives for the adaptation enables more compli-
cated maneuvers beyond those that can be achieved by using
regulation. Finally, the critical value is negative on average for all the
maneuvers; the critical value can be negative whenever the dynamics
of the system are already converging to the desired state.

V. Conclusions

The adaptive Lyapunov feedback controller presented herein
enables several planar propellantless spacecraft relative maneuvers
using atmospheric differential drag. The controller was successfully
used in simulations for a fly-around maneuver followed by a

-10 0 10 20 30

-1

-0.5

0

0.5

1

1.5

y [km]

x 
[k

m
]

No Adaptation

With Adaptation

Start

Linear Model

Guidance

0 0.5 1 1.5
0

2

4

6

8

10

Time [days]

N
or

m
al

iz
ed

 tr
ac

ki
ng

 e
rr

or

No Adaptation

With Adaptation

Fig. 6 Rendezvous case 2: maneuver trajectory (left), and tracking errors (the l2 norm of e).

Table 3 Performance parameters for all simulations

Tracking trajectory Tracking dynamics

Parameter Stage 1 (fly around) Stage 2 (formation keeping) Rendezvous case 1 Rendezvous case 2

Nonadaptive

Control changes 80 1877 239 37
Time, h 13.23 179.07 66.05 38.92
Drag mean critical value, m∕s2 −5.90 · 10−6 −1.17 · 10−7 −1.16 · 10−4 −1.71 · 10−4

Mean actual drag, m∕s2 3.37 · 10−5 3.85 · 10−5 3.56 · 10−5 3.50 · 10−5

Margin, m∕s2 3.96 · 10−5 3.86 · 10−5 1.52 · 10−4 2.06 · 10−4

Adaptive

Control changes 76 1829 124 36
Time (hr) 13.23 179.07 49.28 37
Drag mean critical value, m∕s2 −6.24 · 10−6 −1.46 · 10−7 −1.50 · 10−4 −1.74 · 10−4

Mean actual drag, m∕s2 3.40 · 10−5 3.87 · 10−5 3.47 · 10−5 3.50 · 10−5

Margin, m∕s2 4.03 · 10−5 3.88 · 10−5 1.85 · 10−4 2.09 · 10−4

6 AIAA Early Edition / ENGINEERING NOTES

D
ow

nl
oa

de
d 

by
 C

L
A

R
K

SO
N

 U
N

IV
E

R
SI

T
Y

 o
n 

Ju
ly

 2
3,

 2
01

4 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.G

00
01

91
 



formation-keeping period and a rendezvous maneuver. The develop-
ment of analytical expressions for the general partial derivatives of
the differential drag critical value ensuring Lyapunov stability in
terms of matrices Q and Ad (chosen by the control designer, i.e.,
independent variables), allows for the implementation of the adaptive
Lyapunov controller for tracking a trajectory, the dynamics of
a reference model, in addition to simply regulating to a desired
final state. The adaptation analytically corrects unrealistic initial
linear reference dynamics, holding the promise for future onboard
implementation on real spacecraft.
The simulations results indicate that the implementation of the

adaptive Lyapunov controller allows for smoother maneuvers with
less duration, less actuation, greater control margin, and satisfactory
accuracy. The use of the general derivatives enables the implemen-
tation of the adaptive Lyapunov controller for virtually any relative
maneuver confined to the orbital plane. The results also confirm the
importance of the linear reference model on the performance of both
adaptive and nonadaptive controllers, representing an important topic
for further investigation.
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