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Introduction

O Differential in the aerodynamic drag produces a differential in acceleration

 This differential can be used to control the relative motion of the S/C on the
orbital plane only

O It is assumed that that the drag devices act instantly (on-off control)

O Control systems for drag maneuvers must cope with many uncertainties
(density changes, winds, contact dynamics, etc.).

Increase drag to
maneuver to
lower, faster orbit.

(deployed
surface)

Lower orbit:
SC2 catches
SC1.




. | inear Reference Model

dThe Schweighart and Sedwick model is used to create
the stable reference model

JLQR controller is used to stabilize the Schweighart
and Sedwick model

 The resulting reference model is described by:

. . . T
X;=AXs +BUy, Ay =A-BK, X,=[Xy Y4 % VYol .
Uy = KX

4 Kiis found by solving the LQR problem




. Nonlinear Moéél

1 The dynamics of S/C relative motion are nonlinear
due to
dJ, perturbation
dVariations on the atmospheric density at LEO
dSolar pressure radiation
L Etc.

1 The general expression for the real world nonlinear
dynamics, including nonlinearities is:

T
]

x=f(x)+Bu, x=[x y % Y]




. Lgapunov APProach

A Lyapunov function of the tracking error is defined
as.  V =e'Pe, e=X-X,, P>0

 After some algebraic manipulation, the time
derivative of the Lyapunov function is:

V =e' (AP +PA, Je+2e"P(f (x)- Ajx+Ba,,l-Bu,)

d Defining A, Hurwitz and Q symmetric positive
definite, P can be found using:




Drag Panels activation strategy

QRearranging V yields

V=-e'"Qe+2(f0-5), U=<0,

p=e"PBa,,, s=-e"P(Ax-f(x)+Buy,)

d Guaranteeing V < 0 would imply that the tracking
error (e) converges to zero

By selecting:
0 =—sign(B) = —sign(e@

V is ensured to be as small as possible.




(_ritical value for the magnitude of differential clrag acceleration

A Product g Is the only controllable term that
influences the behavior of V =2( S0 —5)

d There must be a minimum value for ay ., that allows
for V to be negative for given values of g and &

A This value is found analytically by solving:

0>e'PBa, 0-6

Solving this expressio




Matrix derivatives

 Choosing appropriate values for the entries of Q and A,
can reduce ap,i

 To achieve this, the following partial derivatives were

developed day,..  Ody..
oA, ' 0Q

1 Starting from the general case of the critical value

e"P(A;x— f(x)+Buy)
Dcrit — ‘e-r EB‘
L The Lyapunov equation was transformed into:
-Q=A'P+PA;, AP =-Q,
A=L4®A+A®L, P =vec(P) Q, =vec(Q),
&)\\@ I:)v = _é\/_le
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Matrix derivatives
dUsing P--AQ, | |
The following derivatives were found in previous work

a—E =T, [|:T3 {aA{ J®116x16:| Lixa ®T11( it j}j,
OA A oA,

(L O Yot © L) (1 OU) U O e
oP, P o
oA, (—16x16 @A ) < 16x16 (—16x16 ® A )(_16X16 ®QV), % = Tl(( A, ) )

O Using the chain rule the desit

on(P)

®T1[ ps ﬂ[““ (Ax— f(x)+Bu,

@T;[@g—gﬂ[gx@(edx—f<x>+5ud)]+

N an(P) '
&\\v\///) (_4x4 ® € )U 16x16 [ ® =
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Aclaptive Lgapunov Control strategy

 Using these derivatives A, and Q are adapted as

follows:
dA, | dQ, |
ﬁ =K, _Sig (8aDC“t 5A ’ & = K, —Sig (aaDcrlt 5Q
dt oA, dt oQ,
pif Pooit s, Boe forj j 4k | g if Poit s, Boert o j 4k |
K =1 8Aj &Aw Ko =19 aQij anl
0 else | 0 else

 These were designed such that:
Q is symmetric positive definite
A, is Hurwitz
L These adaptations result in an adaptation of the
quadratic Lyapunov function
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Numerical Simulations

O Simulations in STK using High-Precision Orbit Propagator (HPOP)
Q Full gravitational field model
O Variable atmospheric density (using NRLMSISE-00)
O Solar pressure radiation effects

1.08E-03
6378.1363
3986004418
0
6778
Target’s right ascension of the ascending
node (deg) ge2
30
25
0
768
- 10
05
25
15
Coo 2
2.5

1 The maneuver ended when S/C were within 10m.

| Parameter | __Rendemvous | _FiyAround_|_Re-Phase |
- x(km) -1 0 0
o ybkm 2 4.25 19

el - X (km/sec) 4.8E-007 0 0

& Dkm/see 170604 0 0
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Numerical 5imulations: Re-[hase

O Simulated trajectory in the x-y plane
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QO Initial relative position of 0 kmin x, -1.9 km iny in the LVLH
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Numerical SimulationS: Re-[hase

O Control signal for both controllers

1k L — .
T 051 -
=y .
2 0 - No Adaptation
1 S - - - I - r - - - - TtT- - — - - =7
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T 05| -
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-1 e 0 - r- - - - r il
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O Adaptive VS Non Adaptive
O Number of control switches: 107 VS 124 (13.7%, less actuation)
O Maneuver time: 27 hr VS 31 hr (10.9%, less time)
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Numerical 5imulations: Flg-Arouncl

O Simulated trajectory in the x-y plane
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-300° r r - : - . L L . . . I .
-150 -100 -50 0 50 100 150 -4.5
X [l -0.35 -03 -0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1
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QO Initial relative position of 0 km in x, -4.25 km iny in the LVLH
O Final State: Stable orbit around Target S/C
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Numerical Simulation& Flg»-/\rouna

O Control signal for both controllers

1 [ PR ¥ R S
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O Adaptive VS Non Adaptive
O Number of control switches: 37 VS 41 (9.8% less actuation)
O Maneuver time: 13 hr for both since maneuver is stopped after a set time
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Numerical Simulation& Rendezvous Casc i

O Simulated trajectory in the x-y plane
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QO Initial relative position of -1km in X, -2km in'y in the LVLH

- Less realistic linear reference model for the rendezvous (R oz=1.6*10%%)
/Q &%}
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Numerical SimulationS: Rendezvous Case i

O Control signal for both controllers
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O Adaptive VS Non Adaptive
O Number of control switches: 124 VS 239 (37% less actuation)
O Maneuver time: 49 hr VS 66 hr (25.4% less time)
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Numerical 5imulations: Rendezvous (_ase 2

1 Simulated trajectory in the x-y plane
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Q More realistic linear reference model (RLor=1.5*10%).
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Numerical Simulation& chdezvous Case 2

O Control signal for both controllers
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O Adaptive VS Non Adaptive
O Number of control switches: 36 VS 37 (2.7% less actuation)
O Maneuver time: 37 hr VS 39 hr (4.9% less time)
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Conc]usions

O The adaptive Lyapunov controller enables tracking of a trajectory, the dynamics
of a reference model, or simply regulating to a desired final state

O Adaptation provides smoother maneuvers with less duration, less actuation, and
greater control margin for the three different controller configurations studied.

 The use of the general derivatives will allow for the implementation of the
adaptive Lyapunov controller in maneuvers, in which a specific path is desired,
consequently, opening the possibilities for many other maneuvers using
differential drag, provided that they are confined to the orbital plane.

Q If the linear reference model is not accurate (unrealistic), the adaptive controller
Is capable of tune itself; thus improving its performance.

d more sophisticated adaptation methods (EIGENVALUES) are expected to:
significantly improve the ability of the adaptive controller to perform well even \_
when the linear reference model greatly misrepresents the actual dynamics s
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