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Introduction 

 Differential in the aerodynamic drag produces a differential in acceleration 

 This differential can be used to control the relative motion of the S/C on the 

orbital plane only 

 It is assumed that that the drag devices act instantly (on-off control) 

 Control systems for drag maneuvers must cope with many uncertainties 

(density changes, winds, contact dynamics, etc.). 
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Linear Reference Model 

The Schweighart and Sedwick model is used to create 

the stable reference model 

LQR controller is used to stabilize  the Schweighart 

and Sedwick  model 

 The resulting reference model is described by:  

 

 

 K is found by solving the LQR problem     
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Nonlinear Model  

The dynamics of S/C relative motion are nonlinear 
due to  

J2 perturbation 

Variations on the atmospheric density at LEO 

Solar pressure radiation 

Etc. 

The general expression for the real world nonlinear 
dynamics, including nonlinearities is: 
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Lyapunov Approach 

A Lyapunov function of the tracking error is defined 

as:  

After some algebraic manipulation, the time 

derivative of the Lyapunov function is: 

 

Defining Ad  Hurwitz and Q symmetric positive 

definite, P can be found using:  
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Drag panels activation strategy 

Rearranging     yields 

 

 

 

 

 

Guaranteeing              would imply that the tracking 
error (e) converges to zero 

By selecting: 

 

      is ensured to be as small as possible.  
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Critical value for the magnitude of differential drag acceleration 

Product βû is the only controllable term that 

influences the behavior of 

There must be a minimum value for aDrel that allows 

for    to be negative for given values of β and δ 

This value is found analytically by solving: 

 

 

Solving this expression for aDrel yields 
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Matrix derivatives 

Choosing appropriate values for the entries of Q and Ad 

can reduce aDcrit 

To achieve this, the following partial derivatives were 

developed 

 

Starting from the general case of the critical value 

 

 

The Lyapunov equation was transformed into: 
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Matrix derivatives 

Using 

The following derivatives were found in previous work  

 

 

 

 

 Using the chain rule the desired final expressions can be found: 
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Adaptive Lyapunov Control strategy 

Using these derivatives Ad and Q are adapted as 

follows: 

 

 

 

 

These were designed such that: 

Q is symmetric positive definite 

Ad  is Hurwitz 

These adaptations result in an adaptation of the 

quadratic Lyapunov function 
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Numerical Simulations 

 Simulations in STK using High-Precision Orbit Propagator (HPOP) 

 Full gravitational field model 

 Variable atmospheric density (using NRLMSISE-00) 

 Solar pressure radiation effects 

 

 

 

 

 

 

 

 

 The maneuver ended when S/C were within 10m. 
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Parameter Value 

Second zonal harmonic J2 1.08E-03 

Radius of the Earth R (km) 6378.1363 

Gravitational parameter μ (km3/sec2) 398600.4418 

Target’s inclination (deg) 98 

Target’s semi-major axis (km) 6778 

Target’s right ascension of the ascending 
node (deg) 262 

Target’s argument of perigee (deg) 30 

Target’s true anomaly (deg) 25 

Target’s eccentricity 0 

vs (km/sec) 7.68 

m(kg) 10 

Smin surface withheld (m
2) 0.5 

Smax surface deployed (m
2) 2.5 

CDmin 1.5 

CD0 2 

CDmax 2.5 

Parameter Rendezvous Fly-Around  Re-Phase 

x (km) -1 0 0 

y (km) -2 -4.25 -1.9 

(km/sec) 4.8E-007 0 0 

(km/sec) 1.70E-04 0 0 

x
y



Numerical Simulations: Re-Phase 
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 Simulated trajectory in the x-y plane 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Initial relative position of 0 km in x, -1.9 km in y in the LVLH 

 Final relative position of 0 km in x, 3 km in y in the LVLH 

 

 

 

 

 

 

 

 

 

 

 

 

 
 



Numerical Simulations: Re-Phase 
 Control signal for both controllers 

 

                                                                                                                                     

 

 

 

                                                                                                                                     

 

 

 

 

 

 

 Adaptive VS Non Adaptive 

 Number of control switches: 107 VS 124 (13.7%, less actuation) 

 Maneuver time: 27 hr VS 31 hr  (10.9%, less time)  
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Numerical Simulations: Fly-Around 

 Simulated trajectory in the x-y plane 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Initial relative position of 0 km in x, -4.25 km in y in the LVLH 

 Final State: Stable orbit around Target S/C 
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Numerical Simulations: Fly-Around 
 Control signal for both controllers 

 

                                                                                                                                     

 

 

 

                                                                                                                                     

 

 

 

 

 

 

 Adaptive VS Non Adaptive 

 Number of control switches: 37 VS 41  (9.8% less actuation) 

 Maneuver time: 13 hr for both since maneuver is stopped after a set time 
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Numerical Simulations: Rendezvous Case 1 

 Simulated trajectory in the x-y plane 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Initial relative position of -1km in x, -2km in y in the LVLH 

 Less realistic linear reference model for the rendezvous (RLQR=1.6*1018) 
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Numerical Simulations: Rendezvous Case 1 
 Control signal for both controllers 

 

                                                                                                                                     

 

 

 

                                                                                                                                     

 

 

 

 

 

 

 Adaptive VS Non Adaptive 

 Number of control switches: 124 VS 239  (37% less actuation) 

 Maneuver time: 49 hr VS 66 hr  (25.4% less time)  
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Numerical Simulations: Rendezvous Case 2 

 Simulated trajectory in the x-y plane 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 More realistic linear reference model (RLQR=1.5*1017). 
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Numerical Simulations: Rendezvous Case 2 
 Control signal for both controllers 

 

                                                                                                                                     

 

 

 

                                                                                                                                     

 

 

 

 

 

 

 Adaptive VS Non Adaptive 

 Number of control switches: 36 VS 37 (2.7% less actuation) 

 Maneuver time: 37 hr VS 39 hr  (4.9% less time)  
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Conclusions 

 The adaptive Lyapunov controller enables tracking of a trajectory, the dynamics 
of a reference model, or simply regulating to a desired final state 

 

 Adaptation provides smoother maneuvers with less duration, less actuation, and 
greater control margin for the three different controller configurations studied. 

  

 The use of the general derivatives will allow for the implementation of the 
adaptive Lyapunov controller in maneuvers, in which a specific path is desired, 
consequently, opening the possibilities for many other maneuvers using 
differential drag, provided that they are confined to the orbital plane. 

 

 If the linear reference model is not accurate (unrealistic), the adaptive controller 
is capable of tune itself; thus improving its performance. 

 

 

 

  more sophisticated adaptation methods (EIGENVALUES) are expected to 
significantly improve the ability of the adaptive controller to perform well even 
when the linear reference model greatly misrepresents the actual dynamics 
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