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Introduction 

 S/C rendezvous maneuvers are critical for: 

On-orbit maintenance missions 

Refueling and autonomous assembly of structures in space 

Envisioned operations by NASA’s Satellite Servicing 

Capabilities Office 

High cost of refueling calls for an alternative for thrusters as 

the source of the control forces 

At LEO drag forces are an alternative 

An Adaptive Lyapunov control strategy for the rendezvous 

maneuver using aerodynamic differential drag is presented 

 

David Pérez 
3 



Introduction 

 Differential in the aerodynamic drag produces a differential in acceleration 

 This differential can be used to control the relative motion of the S/C on the 

orbital plane only 

 One possibility to generate the drag differential is to use rotating flat panels 

 It is assumed that that the panels rotate almost instantly (on-off control) 

 Three cases for the configurations of the panels are considered: 
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Contributions 

 The foremost contributions in this work are: 

 An analytical expression for aDcrit . 

 Analytical expressions for : 

 

 

 Adaptive Lyapunov Control strategy 

 Uses adaptation to choose in real time an appropriate positive definite matrix P in a 

quadratic Lyapunov function such that aDcrit  is reduced on the fly. 

 Does not require numerical iterations 

 Runs in real time, requiring onboard measurements that would be available during 

flight. 

 Assessment of the approach performances via STK simulations in terms of: 

 Duration of the rendezvous maneuver and the  

 Number of switches in the differential drag (control effort) 
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Drag Acceleration 

The drag acceleration experienced by a S/C at LEO is a 
function of: 
 Atmospheric density 

 Atmospheric winds 

 Velocity of the S/C relative to the medium, 

 Geometry, attitude, drag coefficient and mass of the S/C 

Challenges for modeling drag force: 
 The interdependence of these parameters  

 Lack of knowledge in some of their dynamics 

Large uncertainties on the control forces (drag forces) 

Control systems for drag maneuvers must cope with 
these uncertainties. 

Differential aerodynamic drag for the S/C system is 
given as: 
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Linear Reference Model 

The Schweighart and Sedwick model is used to create 

the stable reference model 

LQR controller is used to stabilize  the Schweighart 

and Sedwick  model 

 The resulting reference model is described by:  

 

 

 K is found by solving the LQR problem     
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Nonlinear Model  

The dynamics of S/C relative motion are nonlinear 
due to  

J2 perturbation 

Variations on the atmospheric density at LEO 

Solar pressure radiation 

Etc. 

The general expression for the real world nonlinear 
dynamics, including nonlinearities is: 
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Lyapunov Approach 

A Lyapunov function of the tracking error is defined 

as:  

After some algebraic manipulation, the time 

derivative of the Lyapunov function is: 

 

Defining Ad  Hurwitz and Q symmetric positive 

definite, P can be found using:  

 

If the desired guidance is a constant zero state vector 

(controller acts as a regulator) 
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Drag panels activation strategy 

Rearranging     yields 

 

 

 

 

 

Guaranteeing              would imply that the tracking 
error (e) converges to zero 

By selecting: 

 

      is ensured to be as small as possible.  
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Critical value for the magnitude of differential drag acceleration 

Product βû is the only controllable term that 

influences the behavior of 

There must be a minimum value for aDrel that allows 

for    to be negative for given values of β and δ 

This value is found analytically by solving: 

 

 

Solving this expression for aDrel yields 
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Matrix derivatives 

Choosing appropriate values for the entries of Q and Ad 

can minimize aDcrit 

To achieve this, the following partial derivatives were 

developed 

 

The first step to find them is to develop: 

 

 

Afterwards the Lyapunov equation was transformed 

into: 
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Matrix derivatives 

Using 

The following derivatives can be found: 

 

 

 

Using the chain rule the desired final expressions can 

be found: 
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Adaptive Lyapunov Control strategy 

Using this derivatives Ad and Q are adapted as follows: 

 

 

 

 

These were designed such that: 

Q is symmetric positive definite 

Ad  is Hurwitz 

These adaptations result in an adaptation of the 

quadratic Lyapunov function 
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Numerical Simulations 

 Simulations were performed using an STK scenario with High-Precision Orbit 
Propagator (HPOP) that included: 

 Full gravitational field model 

 Variable atmospheric density (using NRLMSISE-00) 

 Solar pressure radiation effects 

 

 

 

 

 

 

 

 
 

 Initial relative position of -1km in x, -2km in y in the LVLH 

 The maneuver ended when S/C were within 10m. 
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Parameter Value 

Target’s inclination (deg) 98 

Target’s semi-major axis (km) 6778 

Target’s right ascension of the 

ascending node (deg) 
262 

Target’s argument of perigee (deg) 30 

Target’s true anomaly (deg) 25 

Target’s eccentricity 0 

m(kg) 10 

S(m
2
) 1.3 

CD 2 



Numerical Simulations 

Simulated trajectory in the x-y plane 
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Numerical Simulations 

 Control signal for both controllers 

 

                                                                                                                                    No Adaptation 

 

 

 

                                                                                                                                    With Adaptation 

 

 

 aDcrit for both controllers 

 

 

 

 

 

 Adaptive VS Non Adaptive 

 Number of control switches: 56 VS 113 (50% less actuation) 

 Maneuver time: 29 hr VS 38 hr  (24% less time)  
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Numerical Simulations 

 Error for both controllers 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Non adaptive Lyapunov controller needs more time and a higher control effort since it 
approaches the rendezvous state performing larger oscillations  

 The reduction on the maneuver time and the control effort is caused by the adaptation of the 
matrix P which allows the adaptive Lyapunov control to tune itself as the error evolves 
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Future Work 

Include the linear reference model in the derivation 

of:  

 

This will allow for tracking a desired path or the dynamics 

of the linear reference model 

Further developments on the adaptation strategy  are 

expected to improve controller performance 
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Conclusions 

 A novel adaptive Lyapunov controller for S/C autonomous 
rendezvous maneuvers using atmospheric differential drag is 
presented.   

 Analytical expressions aDcrit ,                      are derived  

 

 The quadratic Lyapunov function is modified in real time, 

during flight using these derivatives, minimizing aDcrit , thus 

maximizing the control authority margin.  

 In simulations both Lyapunov controllers have the 
unprecedented ability to perform rendezvous to less than 10 
meters without propellant 

 The resulting behavior of the adaptive Lyapunov controller is 
an improvement 

 Significantly lower control effort (50% less actuation) 

 Less time to reach the desired rendezvous state (24% less time) 
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Questions 



Matrix derivatives 

 Vec operator and Kronecker product 

 

Matrix Derivatives 

 

 

 

 

 

 

 

Matrix Derivative Transformations 
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