Differential Drag Control of Miniature Satellites using Origami Concepts

PI: Riccardo Bevilacqua, Co-PI: Johnson Samuel

Undergraduate Research Team: Skyler Kleinschmidt, Vidyavisal Mangipudi, Colin Mason, Grace Tilton Department of Mechanical, Aerospace and Nuclear Engineering

Motivation

Current Spacecraft Maneuvering: Propulsion Systems

- Mission life limited by fuel
- This fuel is expensive: ~\$5000/lb to transport it to Low Earth Orbit (<600km)
- Excess heat, dangerously flammable
- Volume cost
- Detectable
 Rendezvous with other

Programs

and

8 cm

Design Details

Design 1: Origami - Based Flasher Sail

The Power of Origami

70 cm

Flasher Deployed

Ongoing Research

1. Sail Material Selection

Design considerations:

- Minimal outgassing
- -30 to +70°C Operating Range
- "Foldable" with minimal wear (small but concrete plastic deformation)

Candidate Materials:

- Mylar
- Kapton

Motivating

Applications

Proposed Solution

Deploying a differential drag surface to alter relative velocity and position of the satellite.

Theory of Differential Drag

Origami is a precision folding method
Large open surface area to folded volume ratio

Origami techniques compress 0.5m² surface area flasher into a 0.5U payload volume.

Melinex		Image credits to technoltape.com, solarguard.com, falkiners.com respectively	
Material	Ultimate Strength (S _{UT}) (kpsi)	Coefficient of Thermal Expansion (α) (in/in/°C)	Folding Endurance (MIT, cycles)
Mylar® (125µm thick)	~30	17x10 ⁻⁶	>2500
Kapton [®] (25µm thick)	~33	20x10 ⁻⁶	>285,000
Melinex® (125µm thick)	~25	19x10 ⁻⁶	>20,000

2. Manufacturing Processes

Challenges:

- Design 1:
 - Embedding stiffening members into body while maintaining sail integrity
 - Ultrasonic welding under consideration

Design 2: Collapsing repeatability – "ironing process"

3. Design of Deployment Train

Control of basal surface area to maneuver target and chaser satellites.

- **Equations:**

Project Goal

Toflytwo1.5UCubeSatsofidenticaldesign totestdifferentialdragmaneuveringin lowearthorbit

Design 2: Quad Sail

Four telescopic booms will extend out of the stowed CubeSat and open the drag surface.

- Actuation methods and process
- Gear Trains

4. Component Testing

NASA General Environmental Verification Specification: A "Worst-case" Vibration Profile

Frequency	ASD Level (G ² /Hz)			
(Hz)	Qualification	Acceptance		
20	0.026	0.013		
20-50	+6 dB/oct	+6 dB/oct		
50-800	0.16	0.08		
800-2000	-6 dB/oct	-6 dB/oct		
2000	0.026	0.013		
Overall	14.1 G _{rms}	10.0 G _{rms}		

All components will be tested to the above profile

Participating Labs

Advanced Autonomous Multiple Spacecraft Laboratory

Director: Prof. Riccardo Bevilacqua

Nano/Micro-Scale Manufacturing and Material Design Laboratory

Low Earth Orbit < 600 km

1U ≈ 10cm x 10cm x 10cm

As Booms Open, Sail Unfolds

Quad Sail Deployed

Maneuvering Technique: Effective drag area is controlled by the boom angle

While the open drag surface of the Quad sail looks similar to that of the Flasher, the deployment techniques differ.

Director: Prof. Johnson Samuel

Acknowledgements

This research is funded by the

Air force Office of Scientific research and

RPI seed grant

