Orígamí-Based Drag Saíl for Differential Drag Controlled Satellites

Presentation by: Skyler Kleinschmidt Co-authors: Grace Tilton and Vidyavisal Mangipudi Research sponsored by: Riccardo Bevilacqua and Johnson Samuel Mechanical, Aerospace, and Nuclear Engineering Department at RPI

why not change the world?"

- Propulsion systems use fuel
- Mission lifetimes are limited by fuel amount
- Propulsion systems take up space

Image credit to University of Surrey

Thinking Outside the Box

□ New method of control and exploration

Less propellant, less cost

□ More volume for instruments

Lack of heat and gases emitted, harder to detect

☐ More control over retirement of dead satellites

Easier, cheaper, and faster access to space

Origami – Japanese art of paper folding

Origami design is uniquely suited to making a large flat surface fit in a small volume

To fly two 1.5 U CubeSats of identical design to test differential drag maneuvering in low earth orbit

 $1U \approx 10$ cm x 10cm x 10cm

Design incorporates ~1U for electronics and data collection and ~.5U payload for differential drag system

Design Process and Critical Steps

- Drag Sail Geometry
 Stowed
 Deployed
- Deployment Steps
- □ Material Selection
- Power System without Drag Interference

□ Motor Selection

Consideration of two possible sail designs

Individual deployment methods for each design

□ Mylar, Carbon Fiber

Dependent on power availability and stowed sail geometry

A: Drag Sail B: Solar Panels C: CubeSat Body D: Deployable Boom

Significance of Envisioned Results

- □ Air Force Office of Scientific Research (sponsor)
- □ National Science Foundation
- Technology developed
 - □New method of control

- Less propellant, more room for instruments
- Lack of gases and heat emitted, harder to detect
- □ More control over when to deorbit dead satellites

Easier, cheaper, and faster access to space

Key Points to Take Away and Next Steps

Creatively solving engineering problems
 Origami design
 Real world application
 Undergraduate Research
 Opportunity
 Experience

Next steps
Proliminary d

Preliminary design almost completed

□ Materials and manufacturing

Prototype by June

Satellite with deployed drag sail

Components

1.5 U Power System Design

Power system cannot interfere with differential drag

() Rensselaer

Wensselaer