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I. Introduction

Autonomy in spacecraft gnidance, navigation, and control (GNC)
is crucial to enable, for example, proximity operations as those
targeted by NASA.! Autonomous GNC demands for analytical or
semi-analytical solutions to be used in missions where computation
capabilities or ground communications may be extremely limited.

With the intent to contribute to the field of autonomous spacecraft
GNC, this Note focuses on the derivation of new analytical guidance
solutions for spacecraft planar rephasing, considering realistic,
along-track, continuous, on—off control only. The along-track,
continuous, on—off control restriction reflects physical spacecraft
layouts, where just a few orbital control engines may be available and
pointed in a predetermined direction, as presented in [1,2]. In
addition, on—off continuous thrust modeling in spacecraft orbital
guidance relates to recent research and development of continuous
and low-thrust engines, as described, for example, in [3.4].

Input-shaping theory, presented in [5—12], and the Hill-Clohessy—
Wiltshire linear equations of spacecraft relative motion, described in
[13,14], are combined to obtain new analytical guidance solutions to
the problem of short-distance (a few kilometers) planar spacecraft
rephasing. A satellite starting from a circular orbit or a slightly
eccentric one can be rephased to a new polar angle on the same orbit.
In particular, the final state can be a new position along the original
orbit, if starting from circular motion, or a closed relative path with
respect to a chosen point, if starting from an eccentric orbit. The
rephasing solutions proposed in this Note are open-loop maneuvers
going from an equilibrium configuration to a new equilibrium
configuration, where equilibrium indicates a nondrifting condition
with respect to the final desired polar angle.

The original contribution of this Note consists of new analytical
orbital guidance solutions, obtained using input shaping. Input
shaping is commonly used for vibration suppression of flexible
structures, and it is here proposed for the first time as an orbital
guidance design tool, enabling the modeling of realistic orbital
control engines.
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II. Analytical Solutions Derivation
for Spacecraft Rephasing
A. Spacecraft Relative Motion Dynamics and Input-Shaping Control
Spacecraft relative motion dynamics is used to model how a space
vehicle moves with respect to the final desired rephase location.
Thus, the rephasing target point is chosen as the origin of the local
vertical/local horizontal (LVLLH) reference frame. This frame is
defined with the x axis pointing from Earth to the reference satellite in
circular orbit (virtual or real), y points along the track (direction of
motion), and z completes the right-handed frame. In LVLH, the in-
plane, linearized dynamics of spacecraft relative motion with along-
track control only, is given by Eq. (1), found in [13,14]:

where T is the orbital period. The analytical solution to Eq. (1), with
constant control u, = i, and initial condition at 7,, is obtained as

x(1) = 2(nx(10) + X (D)u,

()
4—-3cos(a) O sin(a)/w [-2 cos(a) +2]/w
6sin(@)—6a 1 [2cos(a)—2]/w [-3a+4sin(a)]/o

- 3wsin(a) 0O cos(a) 2 sin(a) ’
6w cos(a)— 6w 0 -2 sin(a) —3+4cos(a)
2[sin(a) + a]/o”
() = —(1/2)[-8+ 3a® + 8 cos(a)]/w”
- =2[-1+ cos(a)]/w
—[3a—4sin(a)])/®
a=w(t—1;) 3]

Input shaping is based on the concept of providing and then removing
energy to/from an oscillatory system. A train of specific impulses is
convoluted with a control signal to achieve the desired final state with
minimal residual vibration, as described in [12]. In this Note, the
control signal to be shaped is chosen as a bang—bang profile of
amplitude u, and a three-impulse shaper is proposed, as described in
Eq. (3):

W= A+l b A A= Av=g. Ay=g
asign[ygy — y(7)], ifr<re/2
Sfo = —usign[ysa — y(to)], if r*/2<1<1",
0, if t>r*
o =Fo@—An, [, = [, (1-240

= 2|y — y(to)l /1t (3)
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where yg indicates the final desired along-track position. The
impulses A, are given in [12], respectively, by 1/(1 + K)?,
2K/(1 4+ K)?, and K2 /(1 + K)?, with K = exp[-Lz/(1 —2)1/?],
and ¢ indicates the damping ratio of the given dynamic system. For
this Note, { = 0, leading to the A; values in Eq. (3). The effect of the
coasting phases Ar is explained in the following sections.

B. Analytical Solution for Initial Circular Orbit

The direct application of Eq. (3) on Eq. (1), starting from
the LVLH circular orbit [ie., x(t;) = (0 y, 0 0)7 and
considering a variable Ar], results in the following expression for
the final state:

c=cos(...)

Eq. (6)]1s selected, to be used in Eq. (3). In fact, replacing yg with y/;
in Eq. (5), the expression for y reduces to y:

Via = 2/3)ya + 1/3)yo = ¥ = yua (6)

The relative eccentricity, representing the physical dimension of the
obtained closed orbit, is given by [15] in the following formula:

erelzvaz_"(b/z)z’ ll=Xf—)z', b:yf_)_’ (7)

Substituting Eqs. (4-6) into Eq. (7), the direct dependency of e,
from At is obtained:

e = 052
[

_ 3¥ta — 3y0
=0\ ———
u

s=sin(...)
c=cos(...)
xp=x(r"4+2A1)

[ —25(0.50; + wA1)—5(0.50, +20A1) + s(a; + DAL+ |
+0.55(a1 + 2wA1) —s5(0.5a1) 4+ 0.55(ar) + 0.55 QwAr)
L +s{wAt) ]

vy =y(r"+2A1)

M=2c(0.5a; + 2wAt) —4¢(0.5a; + wAr) +2¢c(a; + wAr) ]
+c(ay +20A1)=2¢(0.5a1) + (o) + cQwAt)+

+2¢(wA1)— 0.5y, (0? /1) +

L +1.5yp (@0? /i) +1 N

Xp=Xx(1"+2A1)

[—c(0.5a; + 20 A1) — c(0.50; + 0AD + c(a; + wAH+

+0.5¢c(a; +20A1)—c(0.5a;) +0.5¢(ar)+
+c(@wAr)+0.5¢QwAr)+0.5

u
)

u
)

S

yr=y(t" +2A1)
45(0.5a; + @A) +25(0.5a; + 2wA1) —2s(a; + w At)+
—s(a; +20A1) +25(0.5a;) —s(a;) —sQwAr)— 25 (wAr)

o = lz(yﬂ;*_yfj) @)

The resulting motion after 7 = #* + 2At is an equilibrium, because
the condition y, = —2ewx, is satisfied, guaranteeing a closed,
nondrifting relative orbit (see [13,14]). Also, the center of the ellipse
representing the final relative orbit is given by the following formula
from [15], applied on Eq. (4):

g l=

The resulting trajectory has the center located at the desired along-
track location ygg, if a new desired virtual location yg; [given in

6(:(%052) - 46(—%052 + ZwAt) - 4c(2a}At + %az) + c(—%az + 2a)At)—|—
—|—4c(a}At - %az) - 166(%0{2 + a)At) - 24c(%a2) - 16c(a}At - %az) +

+18 + C(ZwAI + %az) + 6c(2wA1) + 24c(wAr) + 4e (a}At + %az)

®)

If At = 0.5T = n/w, the resulting relative eccentricity is zero, and
the final state is x(7;) = [0y O O], that is, the spacecraft is
on the same initial orbit, at the desired along-track position.
Equation (8) cannot be solved in closed form in terms of Az, when a
desired ¢, 1 given. Nevertheless, its derivative with respect to Az can
be computed [Eq. (9)], showing maximum relative eccentricity for
At =k2r/w, k=1,2,... and zero relative eccentricity for
At =krfw, k=1,2,...:

derg __ 8it’[cos(wA1/2)] sin(wAt/2)n
o(A1) @ V(2 JoP)cos(wAt/2)y

2 2
I e B B

The following discussion explains how Eq. (8) can still enable the
design of different types of rephasing by adjusting the value of Az to
obtain a final closed relative orbit around the along-track point yg,
with desired relative eccentricity. These types of maneuvers may be
envisioned for close approach to a target and fly around for
monitoring purposes. It must be noted that Eq. (8) shows 2w as the
highest frequency. The Nyquist-Shannon sampling theorem
presented in [16] can be used to determine how many points are
needed to approximate the function in Eq. (8). By computing Eq. (8)
at Ar points spaced by a 1/(4w) time distance, that is, theoretically
87 points total (i.e., at least 26), an entire orbital period is
approximated. A desired e, value can be then interpolated using
these points (e.g., using splines), posing minimal computational
burden.

C. Analytical Solution for Initial Eccentric Orbit

The direct application of Eq. (3) on Eq. (1), starting from an
eccentric orbit with the same semimajor axis of the LVLH orbit
lie. x(tg) = (xo yo X9 —2wxg)T] as described in [14], and
considering a variable At, results in the following expression for the
final state:
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s=sin(...) c¢=cos(...)

2xpwtcQwAt + a3) — 2ﬁs(%a3) + usQwAt + a3) + 2us{a; + wAn)+

1
=x(t* +2A1) = —
xp=x(t* + ) o

—412s(%a3 + wAl) + uasQCwAr) + 2us(wAt) + is(az)+

—212s(2wAl + %0@) + 2xqwsQwAr + a3)

4)’(0(L)C(2(L)Al + (13) + 212 + 2126'(03) + 3w2yfd — w2y0+

1
yr =y + 241 = —2x sin(2owAt + a3) + pyl
o)

—412c(%a3) + dizc(az + wAt) — 412c(2wAl + %a3) +

+2icCwoAt + a3) — 4xyw + 2ucRwAt)+

—8126(%(13 + wAl) + 4iic{wAt)

2w xys(a; + 2wAt) + 2120(%0:3) — it —ic(os + 2wAt) —icCwArn) +

1
b= (" 4+ 2A7) = ——
Xy = X(t* + 2A1) 2(0\‘

+212c(%a3 + 2wAl) —ic(az) + 412c(%a3 + wAl) —2uc(wAt)+ J

—2iic(ay + wAr) — 2xqwce(az + 2wAt)

2xyws(as + 2wAt) — 2ﬁs(%a3) + 2is(ay + wAt) + its(az) + is(az + 2wAnN+

.. 1
yp =" + 240 = ——
[42]

+2ius(wAr) — 412s(%a3 + wAl) + 2w’ xgc(as + 20A1) + is(QoAl)+

P /2(yfd_—yo) (10)
U

—2iis (% a; + 2wAl)

As in the previous case, the condition y, = —2ewx; is satisfied in
Eq. (10). The center of the ellipse representing the final relative orbit,
computed as in Eq. (5) using the solution (6) and Eq. (10) is obtained
as

x=0, )_’:)’fd—%ffo (1)
[

Equation (11) shows that rephasing to a final equilibrium relative
orbit, with the center at a desired location, is possible. In fact, starting
from t;, and waiting for any time instant when x = 0 (there are two
positions along the closed relative orbit that correspond to this
condition), the input-shaped control signal can be applied then. The
wait time is given by

1 .
twait = gtan” (X_O) + kﬂ', k= 0, 1, 2, N (12)

wXxg

The relative eccentricity can only be maintained equal to the initial
value or increased [Eq. (13)]. This increase, indicated with a A, once
again, depends on the time interval Az as follows:

Similar to Eqs. (8) and (13) can be analytically differentiated with
respect to At, but in this case, the derivative is trivial to analyze and
thus it is not shown for brevity. The behavior of the function in
Eq. (13) does not show maximum and minimum values at times
multiple (or submultiple) of the orbital period. The Nyquist—Shannon
sampling theorem presented in [16] must be invoked again, to find
the number of points to approximate the function in Eq. (13), and
then interpolation can be used to compute the correct At for a
desired Ae

rel*

III. Guidance Trajectories

This section presents the different types of trajectories that can be
designed using input shaping. All the sample cases assume a low-
thrust control acceleration of 2¢ — 5 m/s?. The amount of maximum
acceleration should be varied depending on the actuators, affecting
the duration of the maneuver [see Eq. (3)].

1
s=sin(...), c=cos(...), Aerd:E

_ [3yta — 30
(12 = _—
u

x0w2c(%a2 + 2wAl) + Xgos (%a2 + ZwAl) + us (%(12 + wAt) +
ﬁ |: —ﬁs(%og + 2a)Al) —2us (%(12 + wAl) + %ﬁs(%og + 2wAl) —us (%(12) +] +
+%12s(%a2) + %ﬁs(ZwAl) + us(wAr)
—2x0w2s(%a2 + 2wAt) + 2)'(0wc(%a2 + 2wAl) - 4120(%0:2 + wAl)—l—
+ ﬁ |: +212c(%a2 + wAl) - 2ﬁc(%a2 + 2(0Al) + ﬁc(%og + 2wAl) - 212c(%a2) +]

—HZC(%OQ) + 2itc(wAt) + ucCwAr) + i

2

2

13)
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Fig. 1 Rephasing to a higher polar angle from initial circular orbit: (top) guidance trajectories; (bottom) control profiles.

A. [Initial Circular Orbit

The first example is a forward rephasing maneuver, increasing the
polar angle of 0.036 deg, in a circular orbit of radius 6778.1 km. In the
linear approximation of the LVLH frame, this can be setup as starting
from x(7y) = 10°[0 —4.2588 0 0], with units in meters and
meters per second, and targeting the origin.

Figure 1 shows the guidance trajectories for three different values
of Atr. For At = 0.57, there is no residual oscillation at the target
point. The maximum relative eccentricity is obtained for Ar = 0,
whereas At = 0.257 is an example of intermediate relative
eccentricity [see Eq. (8)]. The AVs are also shown; for the case of

Ar=0.57, a comparison with a two-impulse maneuver can
be straightforwardly made (see [17]). The impulsive AV is
0.1326 m/s2. The cost of continuous thrust schemes is expected to
be higher in terms of AV, but lower in terms of propellant
consumption, because low-thrust continuous engines can be very
efficient compared with impulsive ones.

The control profiles shown in the bottom plot of Fig. 1 may be
straightforwardly tracked by single thrust, on—off, continuous low-
thrust engines, by means of pulse width modulation, or followed with
engine systems capable of generating a limited set of thrust values, as
described in [3].

-~ -wait time
—— At=0 5T target
1000
500
E 9
>

500 b
-1000 1 i d ¢ " ez ! i
6000  -5000 4000  -3000  -2000  -1000 0 1000
y {m]
ox10”
| ——At=0 5T aV=0.3027 m/s
L) S—— i j e AL=B25 5 AV=0.3449 /s
I O T NN N TS N e Al=4440 s AV=0.2701 mis
%
E [ :~
B i
L
-2 i
0 05 1 15 2 25 3
tis) x 10"

Fig.2 Rephasing to a higher polar angle from initial eccentric orbit: (top) guidance trajectories; (bottom) control profiles.
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B. Initial Eccentric Orbit

The second example targets the same rephasing angle and
semimajor axis, but the spacecraft possesses an initial eccentricity of
0.0001. In the linear approximation of the LVLH frame, this can be
set up as starting from x(f,) = 103[—0.6043 —42584 0.0004
—2wxg]7, with units in meters and meters per second, and targeting
the origin. A waiting time (coasting) is used [Eq. (12)], with £ = 0,
before applying the control signal. Figure 2 shows the guidance
trajectories for three different values of Ar. For Ar = 0.57, an
intermediate relative eccentricity is obtained (between initial and
maximum achievable) on the final relative orbit. For Ar = 6255, the
minimum relative eccentricity is obtained. Finally, for Ar = 4440s,
the maximum relative eccentricity is obtained. These Ar values are
obtained analyzing Eq. (13) through the procedure outlined in the
preceding section.

As commented in the preceding case, the control profiles shown in
the bottom plot of Fig. 2 can be tracked by engine systems as those
described in [3].

It is important to underline once again that the illustrated guidance
solutions are valid in the simplified linear dynamics case with
relatively small distances involved. To implement these solutions on
a real spacecraft, a closed-loop controller is needed, to track the
analytical guidance profiles.

IV. Conclusions

This Note introduced novel analytical guidance solutions for
spacecraft rephasing maneuvers, based on linearized equations of
spacecraft relative motion and a technique known as input shaping.
Input shaping is proposed for the first time in spacecraft orbital
maneuvering. Thanks to the technique proposed, realistic finite
magnitude and finite duration along-track-only control can be
considered. The analytical solutions can lead a spacecraft from an
initial location along the orbit to a desired final location on the same
course, as well as modify its path so that it will fly in an equilibrium
fashion about a desired point ahead or behind its initial location. The
guidance is presented in close-form solutions and graphically
illustrated in this Note with a few examples. Procedures to choose key
guidance parameters affecting the size of the final relative motion are
also provided. The proposed guidance could be used for real
missions, when combined with an appropriate feedback control
technique.
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